This is an evidence-based session mead recipe template that makes remarkable tasting mead in minimal time and turns honey to great tasting mead in a week. The mead recipes are 4-4.5% ABV and are under 100 calories per serving.
The fermentation is straightforward and effort is minimal (~15 minutes to start ferment and <1 hour effort overall). This recipe works well with a wide range of honey profiles, including many wildflowers. All ingredients are easy to find in home brew stores around the world, and no specialty nutrients are required. This recipe template is intended to be a super easy and tasty recipe for veterans and beginners alike.
Recipe: One Week, Crushable, Evidence-Based Short Mead, 4.5% ABV, 4.2 Gallons
Specs:
- OG: 1.035
- Expected FG: 1.000
- ABV ~ 4.5%
Ingredients:
- 1 packet of US-05 Chico Ale Yeast
- 2 kg (~4 lbs or 1.4 liters) of honey (golden, late summer, wildflower works well)
- 15-liter jug of (low mineral) spring water
- 1 gram calcium chloride (optional)
- 0.3 grams sea salt (optional)
- 0.5 grams of gypsum (optional)
- 0.5 grams of ascorbic acid (optional)
- 5 grams of Go-ferm (optional)
- Nutrients, options of (pick one):
- 2.1 grams of Fermaid-k/ Energizer and 3 grams of DAP
- 1.8 grams of Fermaid-O,1.4 grams of Fermaid-k/ Energizer, and 2 grams of DAP
- 3.6 grams of Fermaid-O, 0.7 grams of Fermaid-k/ Energizer, and 1 gram of DAP
- a 7-gallon wide mouth fermentor (or a second 15-liter jug)
A note on the fermentation vessel
For the recipes involving whole fruit, it is easiest to add everything to a cleaned and sanitized wide mouth 7-gallon jug and mix with a wine whip. You can use a 6 gallon bucket, but you will need to be careful when degassing. Alternatively, split all ingredients between two 15 liter jugs (see pictures) which will avoid all the cleaning. Using liquid honey from glass jars (say two 1 kg jars of honey) is easiest for pouring.
Fermentation (~5 days, 64-72 °F)
- Time 0 – add all honey, water, Go-ferm and salts (if using Fermaid-O add first addition, 1.77 grams, now). Use a wine whip to agitate aggressively for a couple of minutes, shake both jugs vigorously for at least two minutes, or add one minute of pure O2. Once everything is dissolved, make sure the temperature of the must is between 64-72°F and then sprinkle yeast evenly on top. Add the rubber stopper (usually no. 10) and air lock. This step can be done in less than 15 minutes.
- +20 minutes, swirl the yeast into solution.
- +12 hours to 4 days, and at least once a day swirl jugs or mix with wine whip with the lid off. Smell the aroma coming out of the fermentor. Keep temperature steady between 64-72 °F.
- Staggered Nutrient Timing (degas aggressively before adding nutrients). Choose one of the following:
- Inorganic:
- +12 hours, first dose of nutrients: 1 grams of DAP and 0.7 grams of Fermaid-k.
- +24 hours, second dose of nutrients: 1 grams of DAP and 0.7 grams of Fermaid-k.
- +36 hours add final dose of nutrients: 1 grams of DAP and 0.7 grams of Fermaid-k.
- Mixed Organic and Inorganic
- Time 0, add first dose of nutrients: 1.8 grams of Fermaid-O.
- +18 hours, add second dose of nutrients: 1.8 grams of Fermaid-O. (or 1 grams of DAP and 0.7 grams of Fermaid-k)
- +36 hours add final dose of nutrients: 1 grams of DAP and 0.7 grams of Fermaid-k.
- Inorganic:
- +day 1 – add 30-60 seconds of pure O2 using diffusion stone (optional).
- +day 3/5 – take gravity readings. It should be 1.000-1.008. Cold crash if desired.
- +day 4/8 – once gravity is 1.000 add fruit/herbs, if desired, using a large nylon bag. Use the pectic enzyme at this point.
- ~day 4/8 + 24/48 hours – remove fruit/herbs after 24/48 hours – when vibrant colors are lost in the fruit or leaves.
- ~day 4/8 + 48 hours once you have reached final gravity – two options:
- add 1 gram per gallon of kieselsol and then after 2 to 24 hours add 3.3 grams per gallon of chitosan if a very fast turn around is needed (this addition, and especially at higher levels may reduce aroma, flavor, and acidity and risks adding astringency in fruit meads and traditional meads, but it results in the mead clearing fast). Rack to secondary or into a keg 1-3 days after adding clarifier.
- rack back into the 15-liter jug (i.e. secondary). If using two jugs you can rack or pour the two half into one, rinse/repeat then rinse/clean/sanitize and save the extra jug.

Secondary
- add 0.5 grams of ascorbic acid (and optional 0.5 grams of malic acid) in secondary during or after racking
- keep stable at a temperature between 64-72 °F if gravity is not yet 1.000. If at 0.9983 it can be keep colder
- keep in secondary until the mead is reasonably clear, which usually takes 24 hours (i.e. no protein chunks in suspension). You can use the kieselsol and chitosan at this point if you didn’t use it in primary, if it’s having trouble clearing, and you desire it clear.
- If you shortened or have a floating dip stick, you can secondary in the keg
The recipe yields 16.5 liters plus any volume from the fruit. If you are using fruit, adding another 1.5 liters of water in primary will yield 5 gallons. If going for a traditional mead, you will get 16 liters.
Bottle or Keg for Shelf Stability
Given the level of alcohol of 4.5%, the final gravity will eventually end up at 0.9983, so you should be careful if bottle conditioning for shelf stability. If fermentation stalls at 1.000 then there is 0.0017 residual sweetness left in the mead. If bottling for extended periods of time and your mead is sitting at 1.000 you want to take that residual sweetness into account (reduce honey used for priming sugar by 50 grams).
- Carbonate to 2.5 vol
- If bottling for shelf stability:
- confirm FG is <1.000.
- rack to a 15-liter jug and add mix in 125 grams of honey diluted 50-50 in warm, non-chlorinated water
- bottle using a bottling wand, cap
- place in an area of 62-68 °F for a couple of weeks
- If kegging you may like to scale the recipe to 5 gallons, then rack into keg and two options:
- carbonate to 2.5 vol using CO2 gas
- mix in 156 grams of honey diluted 50-50 in warm, non-chlorinated water, place in an area of 62-74 °F for a few days to a couple of weeks
Bottle or Keg for Residual Sweetness
Regarding sweetness, the meads will finish dry at 0.9983. However, S-04 often crashes at 1.000. This leaves residual sugar which, combined with the perceived sweetness from the honey and pomme is offers lots of perceived sweetness. I typically keg at 1.000. Many of the melomels below are balanced at off-dry at the 1.000-1.001 range. You can back sweeten with juice or honey.
The main issue is that back sweetening with honey can leave mouth coating unfermented honey flavor if you add too much, which may be perceived at approximately 30-50 grams for many of the recipes. To get around this, you can partially ferment added honey in secondary.
There are three options for residual sweetness. All will be refrigerated as they will no longer be shelf stable.
- Cold crash during primary at desired sweetness, usually 1.000-1.003. Note, you may want to add the fruit/ spice/herbs upfront in this case, but make sure to rehydrate the yeast if doing this.
- If using a keg, add fruit juices or honey to taste (in steps of ~15 grams of honey) and immediately carbonate to 2.5 volumes using C02
- Finish primary, rack to bottle and keg, add enough sweetness for carbonation and residual sweetness. If bottling, use plastic bottles and refrigerate once the bottles are hard. If kegging, prime with honey, check sweetness level every couple of days and cold crash at the desired level of residual sweetness.
A Short Note on Time Saving
This recipe is designed to work with minimal equipment and with a mind for time saving. One of the biggest time savers is reducing cleaning. Using virgin spring water jugs for primary and secondary means no clean up. Rinse and recycle when done.
If using a 7-gallon fermentor you can leave the wine whip in as the top 1/4 sticks out, so it is easy to reattach back on the drill. The whip is also handy to weigh down bags of herbs and fruit. I also leave my hydrometer in the mead and just take it out every time I stir it with the wine whip. These save dripping mead everywhere and trying to clean and sanitize instruments every time they are used.



Short Mead Recipe Variations
This recipe works really well for dry traditional meads. However, it also works well with additional flavors, and here are some tried and true variations on the recipes. In general, I prefer there to be two complimentary flavors, as there are only a few flavors I prefer to stand on their own.
Add all fruit and herbs, etc., at end of primary to maximize aroma, flavor and body. All whole fruit need to be frozen beforehand and thawed to the temperature of the must (62-77 °F by warming fruit on a stove-top or leave covered at room temperature for ~ 12 hours), and added to a sanitized nylon mesh bag. Similarly, add any herbs/ zest to a nylon bag. If using the two-jug method, avoid whole fruit and use fruit juices or variants with herbs.
- Traditional
- use S-04 yeast
- use inorganic nutrients
- Keep the temperature stable but slightly higher – between 66-74 °F. If higher, 70-76 °F, make sure to take gravity readings at 24+ hours before step feeding and don’t add nutrients if it’s past the one-third sugar break (gravity of 1.024). If the yeast is not floating on top, you need a higher temperature.
- increase DAP additions from 1 to 1.3 grams (i.e. low or add a medium amount of YAN)
- add 1 gram of malic acid in secondary (optional)
- Lacto Sour Mead
- direct pitch 50-100 billion count probiotic pills per gallon at yeast pitch
- select probiotics with predominantly Brevis and Plantarum strains
- lacto intensifies aroma – use orange blossom or an excellent clover/ wild flower
- make sure the honey has low floral character, so the mead doesn’t get perfumelike
- Strawberry and Rhubarb
- 1.0 kg of strawberry
- 1.0 kg of rhubarb
- make sure there is sufficient bicarbonate\ buffering
- 0.75 grams of pectic enzyme
- Note for Strawberry with Rhubarb, use 1.5 kg of strawberry and 0.5 kg of rhubarb
- Remove fruit before 24 hours to avoid extracting Strawberry seed tannin/funk
- use a very fine mesh bag to avoid residual Strawberry seeds
- use of kieselsol and chitosan will cut the acid if desired
- Raspberry
- 1 kg of raspberries
- remove fruit after 24 hours
- use a very fine mesh bag to avoid residual seeds
- 0.75 grams of pectic enzyme
- use of kieselsol and chitosan, will cut the acid if desired
- Cream Soda
- 2 kg of bright red, sour cherry
- 1.5 tbsp of vanilla extract
- add both 0.5 grams of ascorbic acid and 1 gram of malic acid
- Mojito
- juice of 4 limes (approx. 1/4 cups, don’t overdo it) using a squeezer
- leave out the ascorbic acid (optional)
- zest of 1-2 limes (adds aroma and pithy complexity, use a potato peeler and bag it)
- 15 x 8-10″ sprigs (tops) of fresh mint (no dirt, spanked, minimal stem, bagged)
- use US-05 instead of S-04 yeast
- Thai-Mojito
- juice of 3 limes (approx. 1/3 cups, don’t overdo it) using a squeezer
- zest of 1 lime (optional, adds line flavor and aroma, use a potato peeler and bag it)
- leave out the ascorbic acid (optional)
- 15 x 8-10″ sprigs (tops) of fresh Thai basil (no dirt, spanked, minimal stem)
- Use US-05 instead of S-04 yeast
- Ginger-Lime
- 1.5 oz of ginger powder
- 4 oz of fresh minced ginger (add to a bag)
- juice of 3 limes (approx. 1/3 cups, don’t overdo it)
- zest of 1 lime (optional, greatly intensifies lime flavor and aroma, use a potato peeler and bag it)
- leave out the ascorbic acid (optional)
- optional, for added complexity, add 1/2 gallon of strained ginger bug in secondary or primary
- for stronger ginger, add powder at pitch
- Can also substitute lemon for lime if preferred.
- Jasmine Green Tea
- ~ 1.5 cups (2/3 of strength of volume) of your favorite loose-leaf jasmine green tea (roasted rice also works great)
- steep at 175 °F in 1 liter of chlorine free water in a French press for only 3-4 minutes, let cool before adding
- add juice of 1/4 cup of fresh pressed lemon juice, one zested lemon (optional)
- Dry Hopped
- 2-3 oz of juicy/tropical new-world hops
- dry hop at refrigerator temperature or shorten contact time to 12-24 hours
- for example, 1.5 oz Citra, 1.5 oz Galaxy
- use Cryo hops if possible, but make sure to only add half the weight
- some residual sweetness is nice, FG 1.000-1.003
- Dry-Hopped Passion Fruit
- 1 liter (or 0.5 liters of two types) of passion fruit juice (no preservatives) or 2-2.5 kg of fruit blend (dragon fruit has excellent color)
- dry hop as above
- some residual sweetness is nice, FG 1.000-1.003
Other tasty variations flavor combination
- Blackberry and black cardamon
- Lemonade with ginger bug ferment
- Black tea, rose water (a cap full), and green cardamon
- Black tea and lemonade
- Crab apple juice (1 liter, or cranberry) with all spice, ginger, cinnamon and citrus zests (no cloves!)
- Cranberry juice (1 liter, or 1 kg red sour cherry or 1 kg strawberry) with 1 can of apple juice concentrate
- Sour gummy: 1 kg of raspberry, or 1.5 kg red sour cherry or 1.5 kg strawberry, with zest of a lemon, lime and orange, with 1 gram of citric acid (if not using raspberries)
- Passion fruit, 1 liter of passion fruit juice or 2.5 kg fruit mix (similar to Dry-Hopped Passion Fruit)
- Pineapple juice (1 liter) and 1 tbsp of smoked chipotle
Recommended flavorings to use with this base:
- Speed Brewing … by Mary Izett
- Recipes from Grofennfell Meadery
A Note on Acid Additions
The use of malic acid is not recommended in most recipes because the carbonation is quite high and acidic fruits are often used. However, in others it does bring a mid-palate minerality, a perception of brightness, and can bring a clearer perception of fruit (especially for cherry and strawberry). If you prefer sour gummy candy over non-sour gummy candy, then you will probably prefer the additional malic acid in the traditional, see tasting notes from triangle tests. For the traditional, 1 gram of malic acid adds some brightness, but you can go to 2-2.5 grams if you really want it to pop. You can also use lactic acid, where about 1 gram of 88% lactic acid gives you about the equivalent pH drop of powered acids.
The ascorbic acid (vitamin C) is recommended to be added to most of the recipes. Ascorbic acid is an antioxidant which will help avoid oxidation when transferring and help with color stability. The use is similar to adding K-meta, but does not harm the yeast. It is not added to reduce acidly. Ascorbic acid provides a rounded brightness and helps promote mouthfeel and a perception of fullness. It will also scrub some types of sulfur off-flavors. Generally, 0.5 grams of ascorbic acid is my baseline, but you can go to 1-2 grams if desired.
In the recipes that call for lemons or limes, the juice adds the acidity and some flavor. The zest is used primarily for aroma and flavor. Ascorbic acid does not need to be added when adding lemon or lime juice.









Spring Water and Salt Additions
The recipe calls for the optional salt additions which are used to contribute to mouthfeel, body, and enhance the perception of sweetness. They are used in the same way you use table salt to flavor food. Let’s look at what each of these does.
- Calcium chloride, (adds Ca, Cl): Helps with flocculation. Contributes body, fullness, complexity and boosts perceived sweetness of honey.
- Sea salt (adds Na, Cl): Contributes body, fullness, and complexity and boosts perceived sweetness of honey.
- Gypsum (adds Ca, SO4): Helps with flocculation. Contributes to dryness and a sharp finish. Leave out if you like a persistently sweet finish.
- Potassium bicarbonate (adds HCO3, K): Contributes body and fullness. Helps buffer the pH drop.
The table below describes the contribution of the salts to the water profile. The first row is a common spring water profile that you can replace with your own. The higher calcium with also add residual alkalinity and help with flocculation.

Here is why each of these are important:
- Carbonate and Bicarbonate (CO3 and HCO3): Buffers pH drops to avoid phenolics from low pH. Levels in the 200-400 range provide mouthfeel similar to a club soda. Note, if the bicarbonate level of the water is not in the desired range, add potassium bicarbonate (or potassium carbonate). Add 0.5 to 1.4 grams of potassium bicarbonate per gallon if water is low to absent in bicarbonates.
- Sodium (Na): contributes body and mouthfeel. Levels in the 10-70 mg/l range are normal, levels of up to 150 mg/l are used to enhance malty body and fullness in beers, but levels above 200 mg/l are undesirable.
- Chloride (Cl): enhances the mouthfeel, complexity and boosts perceived sweetness of honey in low concentrations. Levels in the 10-70 mg/l range are normal. Keep below 150 mg/l and never exceed 200 mg/l. Keep the Chloride to Sulfate ratio to at least 2:1.
- Sulfate (SO4): Enhances bitterness and adds a dry, sharp, profile to the finish. Avoid if you want a lingering sweetness. High levels of sulfate will create an astringent profile that is not desirable. 5-50 mg/l is recommended
- Calcium (Ca): Contributes to water hardness and lowers the pH. It is an important yeast nutrient, and levels just over the 100 mg/l are desirable for optimal yeast flocculation. Keep in the range of 50 mg/l to 150 mg/l.
- Magnesium (Mg): Contributes to water hardness. A critical yeast nutrient and amounts 10-30 mg/l range are desirable. Levels above 30 mg/l may be undesirable unless balanced with calcium levels. Preliminary evidence suggests that this is important to have in your spring water, and not all spring waters contain it. Honestly, I think this is why the fermentation goes so well in my favorite spring water.
Yeast Variations
US-05 dry ale yeast is an excellent option for first time brewers and pros alike. It is very clean, with almost no esters and a cracker/candy profile that lets the honey shine through. It is a more forgiving yeast that is more acid-tolerant, and there is less chance of off flavors. US-05 is also a faster fermentor. US-05 works best for the metheglin-type variants, i.e. Thai-style Mojito, and hopped meads. It also works best for acidic melomels, such as the tropical, rhubarb, and raspberry.
However, IMHO, S-04, with its pear and apple esters, low attenuation, and honey like character is preferred for traditional short meads. That said, it is also more susceptible to just about everything: temperature changes, oxygen levels, inorganic nutrient burn, acidity levels. If you’re an intermediate brewer or better, or have all the elements of the brew down, give it a try for the traditional. This yeast also has a harder time managing organic nutrients and has a sightly higher nutrient requirement.
This recipe is not recommended for wine yeasts which have different nutrient requirements, temperature ranges, and fermentation preferences. For wine yeasts, you need to stagger, and it is much better to use mixed organic-inorganic nutrients or fully organic nutrients. If you use a wine yeast, use EC-1118 (think clean and crisp champagne), and keep temps in the 60-64 °F range. Other wine yeasts often have a wine cooler like flavors/esters, which is very different from this clean ale-like recipe.
Some Kveik strains also work exceptionally well for this recipe. This is especially true if you do not have temperature control and need to ferment somewhere in the 65-105 °F range. Make sure to add plenty of oxygen up front and stagger with a medium level of nutrients (Fermaid-K 2.4g, DAP 4.5g total, or just add an extra feeding at 48 hours). The Stranda and Voss strains are great for metheglins. Avoid any strains, such as Ebbegarden that are said to enhance bitterness as it adds bitterness and ruins the perceived sweetness of honey.
Nutrient Variations: Alternative Staggering and Pitching Upfront
S-04 is one of the few yeasts that can take all the nutrients upfront (all at 2-12 hours). This will bring out extra pear and banana character, but will replace some honey character. Make sure to provide oxygen and use Go-ferm if pitching upfront with S-04. However, staggering is recommended as later generations of yeast are more healthy and may help avoid phenolics cased by mistakes later in fermentation, such as temperature drops and acid fluctuations. This is only recommended if you are in a pinch. For all other yeasts, you should stagger.
The current recommendation for staggering is based on bench trials. S04 will produce phenolics on day 2 if using only inorganic nutrients (DAP/energizer) and you stagger starting right after pitch, also see off-flavor notes below. US-05 yeast is much less prone to off-flavor caused by staggering with inorganic nutrients. If you want to stagger in the first 24 hours, use a low level of nutrients (3.8 grams DAP and 2 grams of Fermaid-k). Make sure all nutrients are in within two days and before the gravity hits 1/3 sugar break, a gravity of 1.024.
Pitch Rate with Yeast Variations
No matter what yeast you use, make sure to pitch both US-05 and S-04 at the recommended 2-3 grams per gallon. The recommended pitch rate of ale yeast is higher than wine yeasts. I have found that a 2-2.5 grams per gallon pitch rate is desirable (see metadata below). A typical home brew yeast packet will say 11.5 grams, but only contains 9.5-9.8 grams.
Use of a “wet” yeast such as WLP001 or Wyeast 1056 may cause sulfur as the pitch rate is several times higher and the yeast are not as well-fed and healthy. You may need to provide a medium level of nutrients for wet yeasts (Fermaid-K 2.4g, DAP 4.5g total, or just add an extra feeding at 48 hours). Again, make sure to stagger. You may also want to pitch half the amount. More experiments are needed here.
Nutrient Levels and Go-ferm
The very low nutrient level recommendation for this recipe is based on triangle tests in the high versus low levels of nutrients with S-04 experiment. It is also based on the metadata at the end of this article, which provides a summary of variations on nutrients and assumptions for this recipe using S-04. Note that the 5 grams of Go-ferm adds 39 ppm YAN which is a huge boost compared to the 44 ppm YAN added using the other nutrients (a low YAN regime is 57-65 ppm YAN total). A low level of nutrients (1.3 grams of DAP instead of 1 gram) will speed fermentation by a couple of days. More experiments are needed to pin down the optimal level of nutrients with and without Go-ferm.
The amount of nutrient account for adding 5 grams of Go-ferm in primary, which you should do if you can. This will help speed up the time between 1.01 and FG, potentially knocking up to a day off fermentation. It also changes the esters slightly towards more apple and less of a pear/banana character with S-04. If you do not have Go-ferm it may be best to adjust your nutrient staggering to 4, 18 and 36 or 4, 24 and 48 hours after pitch. It is also advisable to increase the nutrients by ~30% by either adding 1.3 grams of DAP instead of 1 gram. Also note that Fermaid-O requires the use of Go-ferm, so you may want to avoid organic nutrients if not using Go-ferm.
Use the manufacture instructions with dry ale yeast and pitch directly into the must. You can rehydrate in the Go-ferm, but it is not necessary and do not use the recommended amount of Go-ferm (1.25 grams per gram of yeast) if pitching above 2 grams per gallon. The maximum amount of Go-ferm before it results in off-flavors is approximately 2.5 grams per gallon for S-04 with a pitch rate of 2 grams per gallon and using inorganic nutrients. That said, if you have the time and energy to rehydrate with Go-ferm and know what you are doing, go for it. An experiment is planned to test this.
Nutrient Variations: Inorganic vs organic nutrients
The recipe works very well with the use of only inorganic nutrients. These are readily available anywhere. However, if you have access, you can try mixed organic and inorganic nutrients. Use organic nutrients for the first one or two feedings and then inorganic for later feeding. This may also help avoid phenolics that inorganic nutrients will produce if the nutrients are upfront right after pitch (before 6-12 hours).
Fermaid-O does not have minerals or amino acids, so must be used with Go-ferm. However, it is not advisable to add more than 5 grams of Go-ferm with organic nutrient regimes. Ale yeasts seem to have a much harder time metabolizing organic nutrients, i.e. fermentation my take 3+ weeks, see metadata below. The long fermentation time may also be due to the high calcium (as there is no added magnesium in organic regimes), but more testing is needed here.
This recipe also works with Wyeast nutrient. This nutrient has approximately 0.8 percent of the nutrients of a typical DAP/Fermaid-K regimes (preliminary and forthcoming). Because of S-04’s difficulty with organic nutrients, the fermentation will take up to two weeks. Best to use US-05 if using Wyeast nutrient.
Oxygen
Yeast need oxygen to ferment! It is best to dose with ~60 seconds of pure O2 with a wand and dispersion stone if you can at 24 hours. If using a wide mouth carboy or bucket, sufficient 02 can be added by taking the lid off and aggressively mixing with a wine whip two or three times a day for the first two to four days. However, doing both forced 02 additions and regular wine whip agitation may result in excess oxygen and result in stuck fermentations.
When using jugs for primary fermentation, shaking each of them for 2 minutes aggressively should theoretically add sufficient oxygen, however the metadata evidence suggests that later 02 additions are needed otherwise you can get a slight sulfur character. Especially if you are not adding later 02 with jugs, it may be best to open ferment by covering the opening with a paper towel or coffee filter and elastic band for the first three or four days. You can add water and air lock on day three or four.
In a side by side test, a traditional mead with US-05 was fermented in jugs where one got O2 at 24 hours and the other was just degassed by swirling the jug. Oxygen was added by aerating with a wine whip at the beginning. The traditional without the O2 had strong sulfur character, and the traditional with the O2 was bright and fresh. Don’t be lazy with the O2. Worry about getting enough O2 in during primary, then worry about oxidation at the end of primary. Bench trials are forthcoming on 02 additions.
How to produce off-flavors
Smell the mead every day of fermentation to see how it is feeling. Here are a few possible off-flavors that you’ll be able to smell if you don’t follow this recipe exactly.
- Phenolic (more common) – smells like mothball, rubber, or band-aid
- Sulfur – at low levels like a warm American lager beer or muddled esters, at high levels smells like rotten egg
- Diacetyl – smells and tastes like butterscotch, sometimes caramel or artificial butter
You can get off-flavors if you do the following:
- Forgot the nutrients, added too much yeast, or forgot to aerate (sulfur, maybe recoverable)
- If you smell sulfur, you probably forgot the nutrients, added too much yeast, or didn’t add enough O2. If you did add the O2 and nutrients, the yeast will clean this up, and it is not likely to be noticeable in your final mead.
- Stagger with a DAP addition within the first 6-12 hours (phenolics, recoverable)
- Light phenolics will noticeable during fermentation if you stagger using DAP nutrients and your first nutrient addition is within 6-12 hours (including DAP/ Fermaid-K/ Wyeast) with S-04 (especially at medium-nutrient levels). This may blow off in the final product. This is less of a concern for US-05.
- Letting the temperature drop below 60 °F or above 72 °F (phenolics if using inorganic, sulfur if organic, likely recoverable)
- Adding acidic fruits during peak fermentation (phenolics, likely unrecoverable)
- Make sure only to add fruit once fermentation has slowed considerably <1.004. Make sure your fruit additions do not drop the pH below 3.0. If they will, make sure only to add fruit once FG is 1.000. Both the tropical fruit and rhubarb mead will get you close to a pH of 3.0 so don’t boost the level of fruit beyond the recipe, add extra potassium bicarbonate, or make sure the fermentation is complete before adding. S-04 is more susceptible to pH drops below 2.9 than US-05 but it can still happen for both.
- Adding more nutrients towards the end (phenolics, unrecoverable)
- A for sure way to ruin the mead completely is by deciding it is not finishing up quickly enough and adding more nutrients that include DAP after a gravity of 1.012. For example, if the mead is sitting at 1.004, and you are getting impatient, do not add more nutrients (DAP/Fermaid-k or Wyeast). This will ruin your mead and is not likely to clean up. Adding Fermaid-O at this stage will help speed fermentation slightly, but may not be metabolized this late in fermentation, so may be noticeable in the final mead. Best to keep the temperature steady, and wait it out.
- Use chlorinated tap water (phenolics, unrecoverable)
If you get diacetyl leave the mead in primary and raise the temperature a few degrees for a couple more days.
In summary keep to the recipe.
What makes this an evidence-based recipe?
This recipe has been derived using evidence from many triangle tests and bench trials. Some experiments have been completed, some are ready for triangle tests, but more can always be completed. The recipe will be updated as new evidence arises. Here are the experiments that support the best practices for the recipe:
- Great Canadian Short Mead Yeast Experiment
- evidence that S-04 provided great aroma (apple/pear/honey) and taste
- Acid Additions in TANG Cream Soda Short Mead
- evidence that small amounts of acid can boost perception of fruit and sweetness
- Mead Water Chemistry: High Chloride to Sulfate Ratio
- evidence that higher chloride-to-sulfate ratio is preferable
- Mead Water Chemistry: High Mineral versus LowMineral Content
- evidence that a moderate level of salts are preferable
- High versus low levels of nutrients with S-04
- evidence that low levels of nutrients are preferred to high
- Effect of kieselsol and chitosan with fruit
- evidence that it may remove flavor, aroma, and contributes astringency if used in secondary
- Effect of kieselsol and chitosan in a traditional
- evidence that it reduces acid levels but also reduces aroma and flavor if used in secondary
- Alternative staggering schedules with S-04
- Evidence that upfront, or three additions (0.5, 1, 1.5 or 0, 1, 2 days) is preferred
- Acid Additions in a traditional short mead
- evidence that small amounts of acid are noticeable, but that preference rating are split
- The taste threshold of Go-ferm with varying pitch rates
- evidence that 3 grams of per gallon is the taste threshold of Go-ferm off flavors
- Forced O2 additions with US-05
- evidence that an oxygen addition at 24 hours avoids sulfur off flavors
Preliminary evidence from metadata and experiments to be repeated (see metadata below)
- 1 gram versus 2 grams per gallon pitch rate with S-04 (done in three side-by-sides)
- evidence that the pitch rate matters but that 2 grams was preferred
- S-04 vs Kviek and other English Strains
- evidence that S-04 and Kviek performed best, but that only S-04 can handle nutrients upfront.
- Oxygenation method – shaking vs wine whip vs forced O2 in closed primary fermentations
- evidence that shaking carboy for 1-2 min may be insufficient for aeration in closed fermentations.
- Tosna 3.0 vs inorganic nutrients using S-04
- evidence that the pitch rate Go-ferm off-flavor taste threshold for Tonsa 3.0 is lower.
- evidence that organic nutrients are sluggish with ale yeast and can result in souring
The fermentation characteristics and other evidence can be seen in the following metadata across these studies.
Metadata
The tables below list the metadata for fermentation with S-04 and US-05. All fermentations listed in the table have SG between 1.030 – 1.038.
Metadata for S-04



Metadata for US-05



Metadata Legend
“Degas”, refers to degassing method:
- “whip” refers to using a wine whip to degas,
- “shake” is aggressive degas, and
- “swirl” is swirling of jugs which is less aggressive.
“Pure O2”, refers to oxygenation method:
- “day #” is the use of pure oxygen with a diffusion stone,
- “shake” is a 2-minute shaking of a jug with 50 percent headspace, and
- “whip” refers to aggressive agitation with a wine whip to during mixing and 2-3 times a day for the first three days.
“Nutrient Level”, refers to level of YAN in ppm (does not include Go-ferm):
- 0.83 is a low level of nutrients, 65.2 ppm YAN (3.9 DAP, 2.1 Fermaid-K)
- 1 is a medium level of nutrients, 78.3 ppm YAN (4.7 DAP, 2.5 Fermaid-K)
- 1.38 is a high level of nutrients, 108.7 ppm YAN (6.6 DAP, 3.5 Fermaid-K)